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) 1. INTRODUCTION _}
1

Hampel (Ref. 1) introduced the influence function as a tool for assessing
robust estimators. In a multivariate population, an influence function can J
usually be defined for estimators of parameters. This influence function can
be used to determine where in the n-dimensional space of observations the
observed vector would have a large effect on the value of the estimator of the

parameter. J

For many parameters, the analytic form of the influence function can be
derived (e.g., the mean, the variance, the bivariate correlation coefficient,
and the multiple correlation coefficient). In other cases, it is difficult to
obtain a closed-form expression for the influence function. In such cases, an .
empiric estimate may be useful. 5

- Many agencies of the Federal government maintain large data bases and
publish reports containing statistical information (e.g., the Bureau of the

- Census, the former Department of Energy, and the National Bureau of Stan-
dards). These agencies use outlier detection and data editing methods as
quality control messures for their data bases, Also, the Department of Energy
has had an extensive program for reviewing several of its data bases. In this

data validation program, some new approaches for detecting outliers were
introduced including the use of influence functions. (Chernick [Ref. 2]) 7

At some of these agencies (particularly the Bureau of the Census) much b
research has been conducted on the replacement of observations (commonly
called imputation). These techniques often rely on other related data to -~
obtain a reasonable estimate as a replacement for the "bad" value. Also, in '
sonme cases, the method is designed so as to avoid inducing a large bias on the

estimate of a particular parameter. Unfortunately, many of these data bases

serve several purposes and a favorable procedure for one egstimate may -

adversely affect estimates of other parameters which are important to dif- 3

ferent users of the data base. Consequently, influence functions can play
B an important role in the maintenance and validation of large data bases.
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To give a formal definition, we point out that the influence function
depends on the distribution function F of a random observation vector, the
parameter of interest, which is commonly written T(F), and the observation .
vector. The parameter is considered as a functional T(F) of the distribution
function F. The influence function is defined by the following equation
vhenever the 1limit on the right hand side exists:

T((1-e) F + € §x) - T(F))
lim

I(F, T(F), x) =
e+0 €

wvhere ¢ is a positive real number, E,is a point of interest in the observation
space, and § x 18 the distribution function with all its probability mass con-

centrated at X.

The influence function is approximately equal in large samples to n times
the difference between the estimator with an observation at x included and the
This
can be seen by replacing F with F_, (the empiric distribution function for a
sample of size n-1) and approximating the limit as ¢ tends to 0 by

estimator with the observation at E'excluded where n is the sample size.

replacing ¢ with -‘1; R
QK
because (Bglarn_l 4-;53 - Fn’ we get that the influence function is

approximately n(T(F,) -~ T(F,_,)) as claimed.

Given a sample of observations, the influence function for a parameter of
interest may be estimated for each observation. An observation which has a
very large estimated 1nf1uence* will deserve particular attention, and we may
be better off to discount it in our estimation procedure. If it is necessary
for such an observation to be replaced, we may choose a value with small or
zero influence on our estimator. The next section contains some common

examples of this concept.

#What constitutes a large estimated influence depends on what assumptions are
made about the underlying distribution.
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In orbit determination problems, least-squares fitting methods are used

to estimate orbit parameters based on data such as pseudo-range, delta range,
and azimuth and elevation angle measurements. It is well known that the
least-squares procedure leads to parameter estimates that can be very sensi-
tive to outlying observations. Consequently, robust filtering or outlier
rejection techniques sometimes need to be used to obtain good estimates of
orbital elements on the basis of such data. The methodology proposed in this
report can be used to arrive at more sophisticated outlier rejection and
replacement techniques for the processing of these data.

The literature on influence functions is growing rapidly with new appli-
cations to estimation, hypothesis testing, and outlier detection appearing
regularly. Chernick (Ref. 2) mentions an application to the validation of
energy data and computes an influence function for multiple correlation in a
special case. Chernick, Downing and Pike (Ref. 3) introduce an influence
function matrix for the autocorrelation function which can be applied to
detect outliers in time series. Reid (Ref. 4) determines an influence

fuaction for the Kaplan-Meier estimator of a survival curve and uses it to
obtain the asymptotic variance of that estimator. Their use for hypothesis ﬁ
testing is proposed by Lambert (Ref. 5). Devlin, Gnanadesikan, and Kettenring ;
(Ref. 6) 1llustrate the potential use of the influence function for detecting ‘]
outlying multivariate observations. -
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2. EXAMPLES

2.1 THE MEAN OF A DISTRIBUTION

For a univariate distribution function F, the mean can be written as

n
T(F) = [ ydF and the sample mean as X -1 ! x, = 1T(F),
LIPS 1 a

-

where we assume |T(F)| < » and {xj} ™ are the m independent observations
{=]

and Fa is the empiric distribution function on the basis of these

observations. In this case

(1-e)_J yd¥ + ex - J yar
€
- (1)
. x - I ydF = T(F) = x -

-0

I(F, T(F), x) = 1lim
€+0

Replacing u by X, we obtain a sample estimate for I

This estimate of I is unbiased and consistent. Large values of i correspond
to observations which are say 2 or 3 standard deviations away from the mean.
So the influence function for the mean is equivalent to a 3 sigma outlier
rejection rule. If the observations have a normal distribution, the proba-
bility of the influence function estimate exceeding 3 standard deviations {fs
less than 0.01.

2,2 THE VARIANCE OF DISTRIBUTION

The variance, 02, of a univariate distribution function F can be written
a

™(F) = _.f. (1‘")2 dPF and the sample variance ol e é- lfl (x, - i)z = T(F,).
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Again, this is meaningful only if we assume T(F) < =& The influence function

1s given by I(F,T(F),x) = (x-p)2 = T(F) = (x=-p)2 - o*. (2)

A sample estimate could be

I = (x‘i)z - .20
This estimate is consistent but has bias azll. Note that large positive values
of I again correspond to Xs which are 3 or more standard deviations away from

the mean. However, interestingly, the largest negative influence occurs at
x =X

2.3 THE BIVARIATE COEFFICIENT OF CORRELATION FOR A BIVARIATE
DISTRIBUTION FUNCTION

Here x = (xl, "2) is a two-dimensional vector,

T _J.xl x, dF - _J.xl ar, _J.xz dr,

T(F) = - 3 Py 2. - 2 ™ 2
(o xy dF) = =, dF))7) (L] x5 dFy - (_J x, dFy)")

where F is the bivariate distribution defined by
P(xl,xz) - l’[xl <xl. Xz <x2]
and COR(x) = Bxp, @), Fy(xy) = F(w, x,).

In this case, the influence function is

2 2
1 ¥ 7
e, (P), x) = Yy, = P ) 3)
' o W | X2 T Vo
where Yy = and y, = s 4, 18 the mean of F._,
1 2 1 1

%

cf is the variance of 'l’ My is the mean of !'2. o: is the variance

., .
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N of Fy, and o = T(F). An estimate fcan be obtained by replacing p, W Wy
2T and 9, with some estimates in Eq. (3). For a derivation of Eq. (3) see
Chernick (Ref. 2). Gnanadesikan (Ref. 7) points out that for bivariate normal
data, the estimated influence function for the Z transformation of the corre-
lation coefficient has spproximately a product standard normal distribution.
This distribution can be used to determine significantly large values for I.

2.4 SLOPE AND INTERCEPT PARAMETERS IN A SIMPLE LINEAR REGRESSION

Here we assume
E(Y|X = x) = a+ Bx (4)

and let "y = E(y), - B(x), o: = Var Y and a: = Var X. X and Y have a
bivariate distribution function with finite second moments

) let o = Cov (X,Y) e We have from Eq. (4)
%%
- o
B = oL (5)
x
and
a= uy - B&. (6)
Therefore

(P, I(F, g sx)
I('oﬂo(‘o?)) = "z I(’ﬂ’o(*a’))"’ e e_o:L— dy )

I(F,q .y) I(F, 02

- _l I(P,ps(x,y)) + "("TL_ q =5 —

»X)

.............




and from Bqs. (2) and (3)

e 3 )
X x y x y

' . [y - u )2 - 2] [(x-ux)z-c:]cy
P - 8
LA 203 (8)
X
! From Eq. (6) we get
- 1(F,0,(x,7)) = (7 - u) = 8x - u) - u_ I(F.8,(x,)) )

Prom Bqs. (8) and (9) we see that these influence functions can be
estimated by obtaining sample estimates of B oM y'ox’oy’ and p. For the
regression parsmeters we see that the influence function depends on the same )
parameters as for the correlation coefficient.

.Y

ralcs 2ca 4
LT T

r!_ Techniques for determining influential observations and leverage points
in regression problems are given in Belsley, Kuh, and Welach (Ref. 8).

Bacause the classical approach to orbit determination involves a linearization
which leads to solving a large regression problem (i.e., estimating six or
more parameters) the techniques given by Belsley, Kuh, and Welsch could be
useful. Also, an influence function for the regression parameters could be
calculated similarly to the calculation fllustrated here for the simple linear
regression,

In each of the four examples given in this section, the estimator i\dn
be consistent for I if consistent estimates of the unknown parameters are
used. Also, i1f the maximum likelihood estimates are used for the unknown
paraneters the estimator i will be a maximm likelihood estimator of I.

- 10




3. OUTLIER DETECTION AND REPLACEMENT OF MISSING OBSERVATIONS

In Gnanadestikan (Ref. 7), it 1s shown how contours of counstant influence
based on Eq. (3) can be used as a graphical tool for detecting outliers with
respect to bivariate correlation. Chernick, Downing, and Pike (Ref. 3) use
influence function estimates for the autocorrelation function of a time series
to determine outliers.

Here we propose the use of the influence function to determine observa-
tion values for replacing outliers or for replacing missing observationms.
Observations with unduly high influence should be replaced by values which
have little or no influence on the estimated parameter or parameters. The
philosophy is that if an observation needs to be replaced and no additional
information is available about what the correct value should be, then one
should choose a value that does not influence estimates of importance to the
users of the data. All this assumes that there is a need to replace the
outlier or to fill in a missing observation.

We shall now illustrate this approach for the case when the estimate of
interest is the population variance (i.e., example Eq. (2)).

Here we assume that we have a sample of size n and we are concerned that
we might have one or two outliers. By rearranging the numbering of the
observations, if one outlier is detected, we assume for notational convenience
that it is the nth observation.

Suppose in the case of one outlier that we observed a value

xh - in-l +3 sﬁ_l. The influence function estimate for both the mean and

the variance at X, will be large indicating that the observation is an
outlier, we shall replace X, with xh'

lat
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O N

=i
.n-l-—if ) s
=l 1al
-1
2 ) B = 2
So-1 ™ w1 1_21 (x; - X1
n-1

2 1 = .2 1,50 =2
S, = 1.21 (xi X)) + ;(xn-xn) . (11)

where xn is our choice for a replacement to X,» From Egs. (10) and (11)
we get

= s xn - in—l
"% ¢ n (12)
and
..32
2 2 n-1 n-1 - = 2
Sh ~ Sa-1 a7 ] Xy = Xy (13
~ = = 2
Ideally, we would like to chooqe xn 80 that X a xn_l and Sn - s:-l, however,

we cannot quite do this. If we choose X = X ,,then X =X .. However,
n n-~1 n n-1

- o 2, .2
choosing xn xn_l tends to make sn < sn—l' In fact, from Eq. (13) we see
-2
that 8‘2‘ - ‘2‘_1 - ::-1 « On the other hand, Eq. (2) tells us that

I(P,T(F),x) = 0 1f (x - u)2 - 02 or x= pyt o. Consequently, one would

suspect that the choice fn - X + 8 or X =X

n-1 n-1 n n-1 would have a

- sn-l

smaller influence on the estimate of 02 . This suspicion is borne out by the

12
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2 2 n-1
fact that for either choice S -~ S _, —n-z-— o The price paid for reducing

=5

the influence on the variance is an influence on the mean. When

in - in-l + sn—l’ )-(n - in—l = ~1 and when
s = = _ = ~Sa-1
LR S TR R « A slight modification of this

replacement for X leads to a zero change in the estimate of 62 « If we solve

2
n-1

2 . s
the equation § =S for X , we find X xn—l *\J5oT Spe1° In the

s
s 2 s _s n-1
case X, = %, NSy S, vehave X -% _, - ATETy and when

- -
A - 1) - - n-1
X~ X _\5 S,-1 e have X - X _, ﬁl‘n‘-n « We shall now consider

the case of two outliers.,

Theorem 1

In the case of two outliers, say X,-1 and xn, we can choose

xl-x + S

n=- n-2 n-2
and
xn - xn-z - sn—2
where
n-2
X mmzr ) %
n n 11
2 1 2 = .2
and Sn-2 n=2 121 (X =X 9>

13
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proof: in - -:T ) X, + (X +X _,)/n
i=]
(n-z) - -~ PS
= X _a+ (X + X,.1)/n.

Our choice of xn - X makes (xn+ xn_l)/n = 2X

=1 a-2/0+  Consequently,

in - xn_zo (14)

From Eq. (14), we see that

n-2
2 1 < .2 . = .2
R L = "
2
28
ol s 2 n~-2 .2 n-2
ML N e ol S e (15)
- 82
n-2.

We note that as long as we choose in - Zin_z - in-l Eq. (14) will be
satisfied. But in order to also obtain Eq. (15), we must have
in-l =X _, %85, _, Ve are fortunate that in this situation, because of
symmetry, we can find replacement values which leave both the mean and

variance estimates unchanged.

In the case of one outlier, we cannot do this. If estimating the mean is
important, and we do not care sbout the estimate of variance, one should

. choose X = X _ . On the other hand, 1f the estimate of variance is much

more important, one should use xn = X + s“_1 or x“ - X

n-1 n=1 §

_y» ith

the choice smong these two estimates dictated by whether X, was larger. than

in-l or not (in the case when the outlying observation X, is knovn): If both
parameters are important in the estimstion, a compromise choice for xn should
be chosen perhaps by minimizing a weighted average of the absolute value (or
square) of the estimated influence functions.

14




The approach of minimizing a weighted average of the absolute value (or
square) of the influence function can be generalized to the case of several
parameters. Observations will be declared outliers if they have an unduly
large influence on any of the important parameters and they will be replaced

by values that minimize their average absolute or average square influence.

The methodology described here for the variance could also be applied in
the case of the correlation coefficient or the regression parameters or for

combinations of these parameters.

15
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4. AN EXAMPLE OF POWER PLANT DATA

The Departuent of Energy collects monthly data on fuel consumption and
electricity generation for all utilities and some industrial plants. For two
particular plants, three years of monthly data were analyzed and outliers were
found using the influence function for bivariate correlation (Chernick [Ref. 2]).
Subsequently, this data was used to illustrate a new time series technique for
detecting outliers based on influence functions (Chernick, et al. [Ref. 3]).
Table 1 presents the 36 values of the consumption data for one of the plants.

This table also includes values for the influence function estimates for the
mean and variance of the sample at each observation point. Notice that obser-
vation no. 23 has the largest influence on both the mean and variance. In

computing the influence function for the correlation between consumption and

v Yvﬁvva..rrYr

generation, observation no. 23 also stood out. Note that for the variance,
the observations closest to the sample mean have the largest negative influ-
ence although these observations have the smallest influence on the mean.

ad Assuming that one wanted to impute a value to observation no. 23, we
would choose the value 9.3 if we wanted to leave the mean unchanged. If we

;g wanted to leave the variance unchanged, we use either 9.3 + 0.38 = 9.68 or

i% 9.3 - 0.38 = 8,92, Because the consumption and generation data are highly
!g correlated and the generation data was not suspect in this case, an estimate
for the consumption data on the basis of regression or on the influence func-
tion for bivariate correlation would be more appropriate in this application.

17




P Table 1. Influence Function Estimates for Power Plant Data

Observation Influence Functions
- _ Number Consumption Mean Variance

= 1 71 59.4 3167.3

2 4 -7.6 -303.3

F 3 3 . -8.6 -287.1

- 4 5 -6.6 -317.5

o 5 4 . =7.6 -303.3

6 3 -8.6 -287.1

7 48 36.4 963.9

8 11 -0.6 -360.7

9 11 -0.6 -360.7

10 5 -6.6 -317.5

11 -4 =7.6 -303.3

12 16 4.4 -341.7

13 3 -8.6 -287.1

14 4 =7.6 -303.3

15 6 =5.6 -329.7

16 15 3.4 ~349.5

17 5 -6.6 -317.5

18 3 -8.6 -287.1

19 4 =7.6 -303.3

20 13 1.4 =359.1

21 6 -5.6 -329.7

22 5 -6.6 -317.5

23 93 81.4 6264.9

2‘0 4 '706 -3030 3

25 8 -3.6 -348.1

26 4 -7.6 =-303.3

27 ] -6.6 -317.5

28 5 -60 6 -3170 5

29 4 =7.6 -303.3

30 6 -5.6 -329.7

31 19 7.5 -306.3

32 4 -70 6 "303. 3

KX ] 3 -8.6 ~-287.1

34 3 -8.6 -287.1

35 5 -6.6 -317.5

36 4 -7.6 -303.3

18
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